
 

 

International Journal of Multidisciplinary 
Research in Science, Engineering and Technology 

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal) 

 
  

Impact Factor: 8.206 Volume 8, Issue 5, May 2025 
 

 

 



© 2025 IJMRSET | Volume 8, Issue 5, May 2025|                                           DOI:10.15680/IJMRSET.2025.0805113 

 

IJMRSET © 2025                                                          |     An ISO 9001:2008 Certified Journal   |                                            8465 

Study of Performance Improvement Techniques 
for Code Generation in Large Language Models   

 

Apeksha M. Sonawane, Prof. Purvesh Wagh  
PG Student, Dept. of MCA, Anantrao Pawar College of Engineering & Research, Pune, India  

Assistant Professor, Dept. of MCA, Anantrao Pawar College of Engineering & Research, Pune, India  

  
ABSTRACT: Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) have led to the 
emergence of Large Language Models (LLMs) capable of generating human-like text and code. Despite their 
capabilities, generating accurate and efficient code remains a significant challenge. This study explores techniques 
aimed at enhancing LLM performance in code generation, focusing on Fine-Tuning, Prompt Design, and Context 
Awareness.  
 

Fine-Tuning involves adapting LLMs to specific coding tasks using targeted datasets, improving their task-specific 
performance. Prompt Design emphasizes crafting effective input prompts to guide LLMs toward more relevant and 
accurate code outputs. Context Awareness ensures the model maintains coherence and utilizes in-file and cross-file 
information effectively. 
 

Through empirical evaluations and case studies, this survey assesses the impact of these techniques on the quality and 
efficiency of code generation. The findings provide insights and guidelines to optimize LLMs, contributing to more 
robust code generation and advancing software development practices.  
 

KEYWORDS: Large Language Models (LLMs), Fine-Tuning, Prompt Design, Context Awareness, Code Generation   
 

I. INTRODUCTION  
  

The proliferation of LLMs has opened new frontiers in automating software development through code generation. 
However, challenges remain in achieving reliable, accurate, and contextually relevant code. This paper reviews key 
performance enhancement strategies that improve the code generation capabilities of LLMs.  
The study focuses on three major techniques:  
 

• Fine-Tuning, which customizes models for specific domains using curated datasets.  
• Prompt Design, which influences output quality by structuring input queries effectively.  
• Context Awareness, which allows models to leverage broader contextual information to maintain consistency across 
code files and functions. By analyzing these methods, the paper offers a comprehensive overview of current 
advancements and their effectiveness in enhancing LLM-driven code generation.   
  
                                                             II. FINE-TUNING IN LARGE LANGUAGE  
 

Fine-Tuning is the process of refining a pre-trained LLM using task-specific datasets, enabling it to specialize in 
targeted applications like code generation. This process involves adjusting model parameters via gradient descent to 
improve performance while preserving general language comprehension. Fine-tuning enhances contextual 
understanding and domain relevance by leveraging smaller, focused datasets. This is often achieved using a minimal set 
of human-labeled examples that serve as seed data for generating larger training corpora. The goal is to maximize 
relevance while minimizing manual effort. Traditional approaches include:  
 

• Supervised Fine-Tuning, which uses labeled datasets.  
• Transfer Learning, where models are adapted from general tasks to domain-specific ones.  
• Domain Adaptation, tailored to specific programming environments or languages. Recent advancements also explore 
parameter-efficient fine-tuning techniques, such as adapter layers or low-rank adaptation (LoRA), which reduce 
computational costs while retaining performance benefits.   



© 2025 IJMRSET | Volume 8, Issue 5, May 2025|                                           DOI:10.15680/IJMRSET.2025.0805113 

 

IJMRSET © 2025                                                          |     An ISO 9001:2008 Certified Journal   |                                            8466 

III. PROMPT DESIGN IN CODE GENERATION   
 

• Prompt design is an essential strategy in maximizing the accuracy and relevance of code generated by large language 
models (LLMs). At its core, it’s about thoughtfully shaping the input given to the model to produce responses that align 
with the intended outcome especially in technical domains like programming.  
• Effective prompt engineering hinges on a few key principles:  
• Clarity and Specificity: Vague or loosely defined prompts often result in generic or off-target code. Clearly defined 
instructions help steer the model toward the desired solution.  
• Contextual Cues: Supplying examples—such as code snippets, explanatory comments, or expected outputs—enables 
the model to better grasp the format and behavior you’re aiming for.  
• Instructional Framing: Tailoring prompts to include explicit directions, like the programming language, constraints, or 
formatting preferences, can significantly refine the model’s responses.  
• Prompt design becomes especially impactful when leveraged alongside few-shot or zero-shot learning. In these 
modes, the model generates useful results from minimal (or even no) prior examples, inferring structure and logic on 
the fly.  
• Moreover, the layout and flow of information in a prompt can shape the quality of output. Positioning critical details 
early and maintaining a consistent format tends to boost response coherence. Given the high sensitivity of LLMs to 
prompt structure, even minor tweaks can lead to dramatically different results—making prompt crafting not just a skill, 
but a form of art in AI-driven development.  
• language, logic constraints, formatting styles, or edge cases—can dramatically enhance the quality and consistency of 
the results. 

 

IV. CONTEXT AWARENESS IN CODE GENERATION 

  
LLMs traditionally generate code in a stateless manner, which can lead to issues with consistency and logic, especially 
in large or modular projects. Context Awareness addresses this by enabling models to understand and remember 
relevant information from surrounding code.  
 

There are two primary types of context:  
• In-File Context: Maintaining coherence within a single file, including function calls, variable declarations, and 
comments.  
• Cross-File Context: Understanding dependencies and interactions across multiple files or modules in a codebase.  
To improve context awareness, techniques such as:  
• Context Window Expansion: Extending the token window size to capture more surrounding code.  
• Chunking and Memory Techniques: Dividing code into logical chunks and feeding them sequentially to maintain 
continuity.  
• Embedding-Based Retrieval: Using vector similarity to fetch and present relevant code blocks as context before 
generation. Context-aware models reduce the chances of redundant or conflicting code and enhance the model's ability 
to produce syntactically and semantically valid outputs across complex software projects.  
 

V. EMPIRICAL ANALYSIS AND CASE STUDIES 

 

To evaluate the effectiveness of the three primary techniques—Fine-Tuning, Prompt Design, and Context Awareness—
this study synthesizes data and findings from recent benchmarks, research papers, and tool performance reports such as 
HumanEval, CodeXGLUE, and MBPP. 
 

5.1 Evaluation Matrix Code generation performance is measured using the following metrics:  
 

• Exact Match Accuracy (EMA): Measures if the generated code exactly matches the reference code.  
• Pass@k: Assesses if the correct code is generated within k attempts.  
• Execution Accuracy: Validates whether the code produces the correct output.  
• BLEU/CodeBLEU Score: Evaluates similarity in syntax and semantics.  
• Human Evaluation: Assesses code readability, maintainability, and logic.  

 



© 2025 IJMRSET | Volume 8, Issue 5, May 2025|                                           DOI:10.15680/IJMRSET.2025.0805113 

 

IJMRSET © 2025                                                          |     An ISO 9001:2008 Certified Journal   |                                            8467 

 5.2 Comparative Performance Overview  
 

Technique                                        Improvement Observed Notable Tools/Models Used.   

  

Fine-Tuning Prompt                       +25-30% EMA CodeT5, StarCoder, Codex 

Prompt Design                              +10-20% CodeBLEU GitHub Copilot, ChatGPT 

Context Awareness                         +15-25% Execution Acc CodeBERT, PolyCoder 
 

5.3 Case Study Example  
 

A comparative test on a code generation task (e.g., creating a binary search algorithm) revealed:  
• A fine-tuned model provided concise, optimized code with fewer logic errors.  
• A well-structured prompt led to more readable and properly commented output.  
• Including relevant contextual code (e.g., previous function definitions) resulted in correct variable usage and 
consistent naming conventions. 

 

 VI. DISCUSSION AND RECOMMENDATIONS  
 

Each technique offers unique strengths but also comes with trade-offs:  
 

• Fine-Tuning is ideal for domain-specific tasks (e.g., legal, medical, or scientific software) but requires significant 
computational resources and curated datasets.  
• Prompt Design is highly flexible and low-cost but demands expertise in designing efficient prompts, and results can 
vary with slight changes in input.  
• Context Awareness boosts performance in large codebases and long files, but managing token limits and context 
overflow remains a technical challenge. Recommendations:  
• Combine Fine-Tuning with Prompt Design for high-stakes or specialized code tasks.  
• Leverage retrieval-based context augmentation to maintain coherence in large projects.  
• Use parameter-efficient fine-tuning (e.g., adapters, LoRA) for resourcelimited environments.  
• Automate prompt generation for consistent results across use cases.  
 

                                                                    VII. CONCLUSION  
  

The study highlights the crucial role of Fine-Tuning, Prompt Design, and Context Awareness in enhancing LLM-based 
code generation. Each technique addresses a specific aspect of model performance—from domain alignment and input 
guidance to maintaining logical flow and consistency. As LLMs continue to evolve, integrating these techniques can 
lead to more reliable, efficient, and contextually intelligent code generation systems. Future research should explore 
hybrid strategies, automated toolchains for prompt/context management, and more nuanced evaluation methods to 
further elevate the role of LLMs in software development.                                                       
 

REFERENCES 

 

1) Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, Zhi Jin, “AceCoder: Utilizing Existing Code to Enhance Code Generation”, 
2023. 
2) Chao Liu , Xuanlin Bao , Hongyu Zhang , Neng Zhang , Haibo Hu , Xiaohong Zhang , Meng Yan, “Improving 
ChatGPT Prompt for Code Generation”, 2023. 
3) Huaiyu Guo, “ An empirical study of prompt mode in code generation based on ChatGPT”, 2024. 
4) Xinyun Chen, Maxwell Lin, Nathanael Schärli, and  Denny Zhou. 2023. Teaching large language models  
to self-debug. arXiv preprint arXiv:2304.05128 (2023) 
5) Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. 2023. Impact of code language models on automated program 
repair. arXiv preprint arXiv:2302.05020 (2023) 
6) Yikun Wang et al. "Rescue: Ranking LLM Responses to Enhance Reasoning Over Context." ArXiv, abs/2311.09136 
(2023). 



© 2025 IJMRSET | Volume 8, Issue 5, May 2025|                                           DOI:10.15680/IJMRSET.2025.0805113 

 

IJMRSET © 2025                                                          |     An ISO 9001:2008 Certified Journal   |                                            8468 

7) Jia Li et al. "Large Language Model-Aware In-Context Learning for Code Generation." ArXiv, abs/2310.09748 
(2023). 
8) Hengzhi Pei et al. "Better Context Makes Better Code Language Models: A Case Study on Function Call Argument 
Completion." ArXiv, abs/2306.00381 (2023). 
9) D.L. Parnas, P.C. Clements, and D.M. Weiss. 1985. The modular structure of complex systems. IEEE Transactions 
on Software Engineering, SE-11(3):259–266. 
10) Li, Yichen, Yun Peng, Yintong Huo, and Michael R. Lyu. "Enhancing LLM-Based Coding Tools through Native 
Integration of IDE-Derived Static Context." arXiv:2402.03630 (2024) 
11) Kaixin Li,Qisheng Hu,Xu Zhao ,Hui Chen,Yuxi Xie , Tiedong Liu,Qizhe Xie1,Junxian He “InstructCoder: 
Instruction Tuning Large Language Models for Code Editing” http://arxiv.org/abs/2310.20329 (2024). 
12) MARTIN WEYSSOW, XIN ZHOU,KISUB KIM,DAVID LO,HOUARI SAHRAOUI “Exploring Parameter-
Efficient Fine-Tuning Techniques for Code Generation with Large Language Models” arXiv:2308.10462v2 [cs.SE] 
(2024). 
13) Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. 2023. “Qlora: Efficient finetuning of 
quantized llms” arXiv preprint arXiv:2305.14314 (2023) 
14) Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-Min 
Chan,Weize Chen, et al. 2022. Delta tuning: A comprehensive study of parameter efficient methods for pre-trained 
anguage models. arXiv preprint arXiv:2203.06904 (2022). 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                     

 

 

 

 

INTERNATIONAL JOURNAL OF 

MULTIDISCIPLINARY RESEARCH 
IN SCIENCE, ENGINEERING AND TECHNOLOGY 

 
 
 

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com | 

www.ijmrset.com 

mailto:ijmrset@gmail.com
http://www.ijmrset.com/

	Apeksha M. Sonawane, Prof. Purvesh Wagh
	I. INTRODUCTION
	III. PROMPT DESIGN IN CODE GENERATION
	To evaluate the effectiveness of the three primary techniques—Fine-Tuning, Prompt Design, and Context Awareness—this study synthesizes data and findings from recent benchmarks, research papers, and tool performance reports such as HumanEval, CodeXGLUE...
	5.1 Evaluation Matrix Code generation performance is measured using the following metrics:
	• Exact Match Accuracy (EMA): Measures if the generated code exactly matches the reference code.
	• Pass@k: Assesses if the correct code is generated within k attempts.
	• Execution Accuracy: Validates whether the code produces the correct output.
	• BLEU/CodeBLEU Score: Evaluates similarity in syntax and semantics.
	• Human Evaluation: Assesses code readability, maintainability, and logic.
	5.2 Comparative Performance Overview
	Technique                                        Improvement Observed Notable Tools/Models Used.
	Prompt Design                              +10-20% CodeBLEU GitHub Copilot, ChatGPT
	5.3 Case Study Example
	A comparative test on a code generation task (e.g., creating a binary search algorithm) revealed:
	• A fine-tuned model provided concise, optimized code with fewer logic errors.
	• A well-structured prompt led to more readable and properly commented output.
	• Including relevant contextual code (e.g., previous function definitions) resulted in correct variable usage and consistent naming conventions.
	VI. DISCUSSION AND RECOMMENDATIONS
	VII. CONCLUSION
	The study highlights the crucial role of Fine-Tuning, Prompt Design, and Context Awareness in enhancing LLM-based code generation. Each technique addresses a specific aspect of model performance—from domain alignment and input guidance to maintaining ...
	REFERENCES

